Glycinergic and GABAergic synaptic activity differentially regulate motoneuron survival and skeletal muscle innervation.
نویسندگان
چکیده
GABAergic and glycinergic synaptic transmission is proposed to promote the maturation and refinement of the developing CNS. Here we provide morphological and functional evidence that glycinergic and GABAergic synapses control motoneuron development in a region-specific manner during programmed cell death. In gephyrin-deficient mice that lack all postsynaptic glycine receptor and some GABA(A) receptor clusters, there was increased spontaneous respiratory motor activity, reduced respiratory motoneuron survival, and decreased innervation of the diaphragm. In contrast, limb-innervating motoneurons showed decreased spontaneous activity, increased survival, and increased innervation of their target muscles. Both GABA and glycine increased limb-innervating motoneuron activity and decreased respiratory motoneuron activity in wild-type mice, but only glycine responses were abolished in gephyrin-deficient mice. Our results provide genetic evidence that the development of glycinergic and GABAergic synaptic inputs onto motoneurons plays an important role in the survival, axonal branching, and spontaneous activity of motoneurons in developing mammalian embryos.
منابع مشابه
Genetic Deficiency of GABA Differentially Regulates Respiratory and Non-Respiratory Motor Neuron Development
Central nervous system GABAergic and glycinergic synaptic activity switches from postsynaptic excitation to inhibition during the stage when motor neuron numbers are being reduced, and when synaptic connections are being established onto and by motor neurons. In mice this occurs between embryonic (E) day 13 and birth (postnatal day 0). Our previous work on mice lacking glycinergic transmission ...
متن کاملThe regulation of motoneuron survival and differentiation by putative muscle-derived neurotrophic agents: neuromuscular activity and innervation.
The chronic blockade of neuromuscular activity is known to promote the survival of developing motoneurons in vivo in the chick, mouse and rat embryo. Increased survival in this situation may reflect an activity-dependent mechanism for the regulation of trophic factor production by target cells. To test this notion, we have examined motoneuron survival in vivo and choline acetyltransferase (ChAT...
متن کاملRelative contribution by GABA or glycine to Cl(-)-mediated synaptic transmission on rat hypoglossal motoneurons in vitro.
The relative contribution by GABA and glycine to synaptic transmission of motoneurons was investigated using an hypoglossus nucleus slice preparation from neonatal rats. Spontaneous, miniature, or electrically evoked postsynaptic currents (sPSCs, mPSCs, ePSCs, respectively) mediated by glycine or GABA were recorded under whole cell voltage clamp after blocking excitatory glutamatergic transmiss...
متن کاملElucidating the molecular mechanisms that underlie the target control of motoneuron death.
Approximately half of the motoneurons generated during normal embryonic development undergo programmed cell death. Most of this death occurs during the time when synaptic connections are being formed between motoneurons and their target, skeletal muscle. Subsequent muscle activity stemming from this connection helps determine the final number of surviving motoneurons. These observations have gi...
متن کاملDifferential short-term changes in GABAergic or glycinergic synaptic efficacy on rat hypoglossal motoneurons.
Using whole cell patch-clamp recording from hypoglossal motoneurons of a neonatal rat brain slice preparation, we investigated short-term changes in synaptic transmission mediated by GABA or glycine. In 1.5 mM extracellular Ca(2+) [Ca(2+)](o), pharmacologically isolated GABAergic or glycinergic currents were elicited by electrical stimulation of the reticular formation. At low stimulation frequ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 25 5 شماره
صفحات -
تاریخ انتشار 2005